Calculus AB

4-4
(Day 2)
Mean Value Theorem
and
Average

Mean Value Theorem for Integrals

If f is continuous on the closed interval [abb], then there exists a
number c \& $[\mathrm{a}, \mathrm{b}]$ such that $\int_{\mathbf{a}}^{\mathbf{b}} f(x) d x=\underbrace{f(c)}(b-a)$.

Definition of the Average Value of a Function on an interval.
If f is integrable on $[\mathrm{a}, \mathrm{b}]$, then the average value of f on $[\mathrm{a}, \mathrm{b}]$ is

Reviewing concepts: Mean Value Theorem for Derivatives What are the two essential requirements for the Mean Value Theorem?

$$
\begin{aligned}
& \text { 1) continuous on }(a, b\rangle \\
& \text { 2) differentiable on }[a, b]
\end{aligned}
$$

What does the Mean Value Theorem state?
if $f(x)$ is continuous on (a, b) and differentrablio on $[a, b /$
then there exists $\ll(a, b)$ such that $F(c)=\frac{F(b)-F(a)}{b-a}$
Graphically show the
Mean Value Theorem.

Find the values) of c guaranteed by the Mean Value Theorem for Integrals for (pg 293) the function over the indicated interval? \because ¢?
50) $f(x)=\cos x$ on $\left[-\frac{\pi}{3}, \frac{\pi}{3}\right]$.

Find the average value of the function over the indicated interval and all values of x in the interval for which the function equals its average value.

$$
\begin{aligned}
& \text { 52) } f(x)=\frac{4\left(x^{2}+1\right)}{x^{2}} \quad[1,3] \\
& \frac{1}{3-1} \int_{1}^{\frac{4\left(x^{2}+1\right)}{x^{2}}} \frac{x^{2}}{\frac{x^{2}}{x^{2}}+\frac{1}{x^{2}}} d x=\frac{4}{2} \int_{1}^{3}\left(1+x^{-2}\right) d x \\
& 2\left[x-x^{-1}\right]^{3}=2\left[\left(\begin{array}{c}
\left.3-3^{-1}\right)-\left(1-1^{-1}\right) \\
\frac{8}{3}
\end{array}\right]\right. \\
& =\frac{16}{3} \\
& \text { b) } \begin{aligned}
\frac{4}{3}=\frac{4\left(x^{2}+1\right)}{x^{2}} \rightarrow 4 x^{2} & =3 x^{2}+3 \\
x^{2} & =3
\end{aligned} \\
& \begin{array}{l}
x^{2}=3 \\
x=7 \sqrt{3}
\end{array} \\
& \text { is in }[1,3]
\end{aligned}
$$

61) The force F (in newtons) of a hydraulic cylinder in a press is proportional to the square of $\sec (x)$, where x is the distance (in meters) that the cylinder is extended in its cycle. The domain of F is $\left[0, \frac{\pi}{3}\right]$, and $F(0)=500$.
a) Find F as a function of x.

$500=1 \mathrm{k}$
translate: proportional means equal times a constant, k, known as the constant of proportionality or constant of variation.
b) Find the average force exerted by the press over the given interval.

Assignment:
Pg. 285
35-55, 63

